漫话开发者 - UWL.ME 精选全球AI前沿科技和开源产品
2024-07-05 talkingdev

PTQ4SAM:用后训练量化使SAM更实用

PTQ4SAM是一个新的框架,旨在减少大规模Segment Anything Model(SAM)的内存和计算需求。SAM是一个全新的大规模模型,但其大规模的特性也使得其在实际应用中面临着严峻的挑战,尤其是在内存和计算资源上的需求。而P...

Read More
2024-05-01 talkingdev

Meta发布ExecuTorch框架,为边缘设备上的LLM提供支持

Meta发布了一款名为ExecuTorch的框架,这是一个后训练量化工具包,能够支持在各种iPhone和Galaxy设备上运行Llama模型。该框架能够在运行7B大小语言模型的手机上,每秒获取多达11个令牌。ExecuTorch框架的发布,进一...

Read More
2024-03-29 talkingdev

1比特语言模型:后训练量化技术助力在消费级GPU上运行700亿参数模型

1比特语言模型的研究为深度学习领域带来了新的突破。该技术通过在不损失性能的前提下,对语言模型中的线性层进行量化处理,实现了模型大小的大幅压缩。这一创新使得原本只能在高性能计算平台上运行的700亿参数模型,...

Read More
2024-03-04 talkingdev

关于LLM量化的全面研究

随着人工智能模型的不断发展,越来越多的研究人员开始研究如何在不影响模型准确性的前提下,提高模型的计算效率和内存利用率。LLM量化是一种后训练量化技术,可以使像OPT和LLaMA2这样的大型语言模型更具内存和计算效...

Read More