最新的CerberusDet框架为对象检测提供了一种灵活的解决方案。该框架通过在单一模型中结合多个任务头,基于YOLO架构进行工作。这种多头模型的设计不仅优化了对象检测的性能,同时也提高了处理速度和效率。通过这种方...
Read More研究人员升级了流行的YOLO对象检测器,推出了YOLO-World,首次引入了开放词汇检测的概念。这种方法结合了视觉语言建模和大规模数据集训练,使其能够快速且准确地识别大量对象,即使在未特定训练的场景中也能表现出色...
Read More近日,一种新的Temporal Dilated Video Transformer (TDViT)技术被发布,旨在提高稠密视频任务的分析能力,如逐帧视频对象检测。该技术采用多头自注意力机制,可进行多层次、多尺度的特征提取,同时利用空间和时间的...
Read More这个GitHub仓库公布了两个重要贡献:RDVS数据集,包含丰富多样的RGB-D视频场景,以及DCTNet+,一种专门用于RGB-D视频对象检测的网络,配备了创新功能,以精确预测和改进现有模型的性能。
Read More