近期在GitHub上发布的ReFT(Representation Fine-Tuning)项目,为微调语言模型带来了一种新的参数高效方法。与传统的PeFT相比,ReFT在保持强大性能的同时,大大降低了成本。该方法通过精细化调整模型参数,使得在进...
Read More混合专家模型(MoEs)是一种增加模型容量的有效方法,同时不会增加每个令牌的运行时间。然而,让它们快速运行并进行微调仍然具有一定的难度。最新研究发现,如果你能有效地修改密集模型参数,以配合MoEs的微调,就能...
Read More