最近,研究人员推出了一种新的图像和视频分割模型——SAM 2,能够从图像和视频中精确地分割出任何物体。该模型采用了全新的分割框架,能够利用少量训练数据进行高质量的物体分割。SAM 2 的分割精度得到了显著提高,比...
Read More无监督SAM(UnSAM)是一种新型的全图像分割模型,它消除了对人工注释的需求。UnSAM通过结合自上而下和自下而上的聚类方法,识别视觉场景中的层次结构,采用一种分而治之的方法。在复杂的视觉场景中,这种方法可以更...
Read MoreMeta AI最新推出的Segment Anything Model(简称SAM)是计算机视觉领域的一个重要的基础模型,该模型在图像分割方面表现出色,但在某些特定领域中却显得力不从心。为了解决这个问题,Meta AI推出了一项新的项目,即A...
Read MorexAI公司近日宣布,其最新旗舰模型Grok-1.5已具备视觉功能,与现有最先进模型相比肩,甚至在某些方面超越。Grok-1.5的推出,标志着xAI在人工智能视觉识别领域迈出了重要一步。该模型利用深度学习技术和大量图像数据进...
Read MoreSegRefiner作为一种创新的模型无关解决方案,通过将细化过程视为数据生成过程,显著提升了各种分割任务中的对象掩膜质量。该技术通过离散扩散过程逐像素细化粗糙掩膜,从而提高分割和边界指标的精确度。这一方法的核...
Read MorePSALM是大型多模态模型(LMM)的扩展版本,通过引入一个掩码解码器和多功能输入模式,在各种图像分割任务中表现出色。这种方法不仅克服了仅限于文本输出的限制,而且还使模型能够有效理解和分类复杂图像。PSALM的创...
Read More开放词汇注意力图谱(OVAM)是一种新兴的图像分割技术,它通过对类Stable Diffusion的文本到图像扩散模型进行改进,实现了对任意词汇生成注意力图的功能,打破了之前的限制。这意味着,通过OVAM,开发者和研究人员能...
Read More研究人员引入了一种新的图像分割技术,只使用基本图像标签即可识别图像特定部分,例如狗。他们通过引入一种新的方法来解决网络识别同一对象的多个实例的挑战,并优化了该过程,降低了错误率。
Read More不一致掩模(IM)是一种新的图像分割方法,即使只有有限的数据,也可以发挥作用。该方法在ISIC 2018数据集上进行了测试,击败了传统技术,甚至超过了在完全标记的数据集上训练的模型。
Read MoreSegMamba是一种专为3D医学图像分割设计的模型,它提供了一种比Transformer架构更高效的替代方案。SegMamba采用全卷积神经网络架构,可以对3D医学图像进行有效的分割,尤其是在肿瘤分割方面表现出色。与传统的医学影...
Read More