Lag-Llama是一种基于Transformer的模型,可在零样本和少样本泛化方面表现出色,并在广泛的时间序列数据上进行了预训练。通过对少量数据进行微调,它超越了现有深度学习方法的最新性能,标志着时间序列分析基础模型的...
Read More元学习是训练系统学习和快速适应新任务的过程。谷歌的这项工作使用从通用图灵机生成的合成数据来改进元学习,并在实验和理论上分析结果。该论文称,通用预测器(UP)是一种通用的元学习方法,可以学习任何任务。UP是...
Read MoreOpenAI最近发布了一种名为母娃表示学习的算法,它可以根据需要自适应大小。这种自适应大小的方法被认为是母娃学习方法,该方法可以在各种粒度上学习特征。
Read More去年最好的编码模型之一是DeepSeek LLM。它在许多基准测试中接近GPT-3.5(即使它可能是3倍大小)。有关模型训练,令牌计数,模型架构等的信息已在技术报告中发布。DeepSeek LLM是一种基于语言模型的编码器,它使用自...
Read More本研究提出了一种深度学习方法,利用四个预训练的卷积神经网络模型来识别视频中的深度伪造人脸,可实现高精度检测。深度伪造技术已成为一种严重的威胁,对政治、社会和经济稳定造成了巨大的影响。该研究提出的方法可...
Read More研究人员开发了一种名为DSF的新方法,以改进谱图神经网络。通过引入节点特定的过滤器权重,DSF可以更好地处理像万维网这样的复杂网络。谱图神经网络(SGNN)是一种基于图的深度学习方法,它在节点分类、图分类和节点...
Read More最近的一项研究引入了一种名为“从错误中学习”(LeMa)的方法,通过从错误中学习来教授大型语言模型解决数学问题,类似于人类学生通过纠正错误来提高自己。
Read More据最新消息,Phind模型在编码方面的表现已经超过了目前最强的GPT-4。该模型支持16k上下文编码,在编码速度上也不逊于GPT-3.5。Phind模型是一种基于自然语言处理技术的编码器,可以用于编写各种程序代码。该模型采用...
Read More